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Pressure-driven flow along a channel in the presence of an applied magnetic field 
which is periodic in the streamwise direction is considered. The configuration is such 
that the transverse component of field B, is non-zero on the centreline y = 0, but its 
streamwise average (B,) is zero. In this situation, flux expulsion due to reconnection 
of field lines occurs when the pressure gradient is sufficiently large. This leads to a 
decrease in the Lorentz forces, hence to an acceleration of the flow, and hence to 
stronger flux expulsion. When viscous effects are weak (i.e. at high Hartmann number) 
this creates a runaway effect, which appears at  a critical value of the pressure gradient. 
This critical value is determined in the inviscid limit, and numerical and analytical 
methods are used to explore the associated ‘ cusp-catastrophe ’ behaviour when effects 
of weak viscosity are taken into account. 

1. Introduction 
The phenomenon of ‘flux expulsion ’ in magnetohydrodynamics occurs at high 

magnetic Reynolds number, whenever a flow with closed streamlines acts upon a 
magnetic field transverse to the flow. The purely kinematic aspects of this phenomenon 
have been widely studied (Zel’dovich 1957; E. N. Parker 1963; R. L. Parker 1966; 
Weiss 1966) and are well understood. It is also known (Galloway, Proctor t Weiss 
1978; Proctor & Galloway 1979) that flux expulsion can persist even in circumstances 
in which the magnetic field has a strong dynamic influence. 

In this paper, we study an aspect of the dynamic behaviour associated with flux 
expulsion, which has been investigated in the simpler context of solid conducting 
rotors by Gimblett & Peckover (1979); this is that, as the forces which drive the 
motion are increased, the ohmic resistance to motion can decrease, leading to a ‘run- 
away’ situation in which the kinetic energy of the motion increases very rapidly, being 
ultimately controlled by any other weak dissipative processes that may be present. 
This behaviour was recognized by Gimblett & Peckover as a typical ‘ cusp-catastrophe ’ 
behaviour, with associated hysteresis effects. The same type of behaviour in a fluid 
context (rotat.ion of a fluid cylinder in the presence of a rotating transverse field) has 
been identified by Moffatt (1980). 

If the flow does not have closed streamlines, flux expulsion can still occur provided 

t Present address: Berkeley Nuclear Laboratorics, Berkeley, Gloucester, England. 
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FIGURE 1 .  Sketch of configuration considered: (a)  magnetic field with no flow; (b )  magnetic field 
showing flux expulsion due to flow under applied pressure gradient. 

that the applied field is non-uniform, and a particle trajectory crosses a region or 
regions in which the transverse component of applied field changes sign. The con- 
figuration of figure 1, which we study in this paper, falls within this general category. 
Specifically we consider the plane two-dimensional flow of an incompressible fluid of 
density p and electrical conductivity r, along a channel I yI < b,  driven by an applied 
pressure gradient -pG, and in the presence of a magnetic field B whose normal 
component B, is prescribed? on the boundaries in the form 

B, = B,coskx on y = + b .  (1-1) 

Figure 1 (a)  shows a distribution of electromagnets which could (in idealized circum- 
stances) produce such a field, and the resulting flux lines when the fluid is at rest (i.e. 
when G = 0). This type of configuration is of potential importance in the context of 
liquid-metal cooling circuits of breeder reactors; here, magnetic fields may be used to 
control the flow structure, and it is important to understand the influence of non- 
uniform fields, among which the field of figure 1 (a)  may be regarded as a particular 
prototype. 

Consider first, in a qualitative manner, what happens when G increases through 
positive values. Assuming that the flow is laminar, the field B and velocity u will be 
periodic in x with period 2nlk. Let U and B represent average values (with respect 
to x) of u, and I B,I on the centreline y = 0. B and U are related through the induction 
equation and the equation of motion. The induction equation describes the distortion 
of flux lines in the downstream direction, and the elimination of strong field gradients 
by ohmic diffusion. When U is large, this process will evidently result in expulsion of 
flux from the core region of the duct, and the formation of magnetic boundary layers 
on y = & b (figure 1 b ) ;  we may therefore infer a relationship 

B = P ( U ) ,  (1.2) 

where P( U )  is monotonic decreasing, and exponentially small as U +a. (The fact that 
the asymptotic decrease is exponential is confirmed by the analysis of $4.2 below.) 
This is represented by the solid curve of figure 2(a) ,  which may be described as the 
flux equilibrium curve. 

t A referee has pointed out that, if the exciting current consists of a current sheet J, sin kx 
on y = ~f: b ,  the regions IyI > b being filled with highly permeable material, then it is B, rather 
than B ,  that is prescribed on y = b.  This leads to a rather different boundary-value problem, 
but with similar qualitative behaviour. 
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FIGURE 2. Flux equilibrium curve (solid) and dynamic equilibrium curves (dashed). Intersections 
represent possible steady states which are of Hartmam type ( H )  or Poiseuille type ( P ) ;  states 
labelled J are unstable. (a) Inviscid situation, showing runaway behaviour if G > G,; ( b )  weakly 
viscous situation, showing the possibility of three solutions (HB, Jsl, P2). 

Consider now the dominant force balance in the equation of motion. The induced 
currents in the core are of order 

and the Lorentz force is of order 
j - aUB, (1.3) 

(1.4) F - j B  N aUB2. 

If viscous forces are negligible, then a steady state is possible only if this force is in 
equilibrium with the applied pressure gradient, i.e. 

aUB2 N pG. (1.5) 

This simple relationship between U and B is represented (for different values of G) 
by the dashed curves of figure 2 (a ) ,  which may be described as dynamic equilibrium 
curves. 

Both the induction equation and the equation of motion can be satisfied only a t  
points of intersection of a dashed curve with the solid curve, e.g. a t  the points H and 
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J in figure 2(a). The point H represents a stable equilibrium, whereas the point J 
represents an unstable equilibrium; this may be seen by considering the behaviour of 
the system at points such as R or S. Suppose that G is given and that we start at the 
point R on the corresponding dynamic equilibrium curve. At R, B is greater than is 
required by flux equilibrium; consequently flux is expelled and B decreases. The 
Lorentz force then decreases and so the flow accelerates, i.e. U increases. We thus 
follow a path in the (B, U)-plane from R towards H as indicated in the figure. Similarly 
if we start at the point S ,  B increases and U decreases until again we arrive a t  H .  
Hence H is stable. Similarly J is unstable. 

If G exceeds a critical value G, for which the dashed curve touches the flux equi- 
librium curve, then there is no intersection and therefore no possibility of an ‘ inviscid’ 
steady-state solution. We have then a ‘runaway’ situation: as the flow accelerates 
under the applied pressure gradient the flux-expulsion effect is so strong that there is 
a dramatic decrease in the resisting Lorentz force; in this situation the velocity can 
only be controlled by viscosity (no matter how weak this may be). 

The effect of weak viscosity may be crudely represented by modifying the estimate 
(1.5) to the form 

The dynamic equilibrium curves are then shifted downwards slightly (the dotted 
curves of figure 2b), each curve intersecting the axis B = 0 at the Poiseuille value 
Up N Gb2/v.  Three possible curves are shown in figure 2 (b )  labelled (i), (ii), (iii). Curve 
(i) is a ‘runaway’ curve which now intersects the flux equilibrium curve a t  the point 
PI, very near to the Poiseuille value (represented by Al). Curve (ii) shows three inter- 
sections H,, J, and Pz, of which H ,  and P, are stable and J, is unstable. As v increases 
further, we lose the intersections J and P, and (curve (iii)) we have again a single 
intersection at Ha; this flow is characterized by strong field and weak velocity, and is 
more akin to Hartmann flow than to Poiseuille flow. 

The above description is of course purely qualitative, but the more detailed analysis 
of the subsequent sections corroborates this description, and provides a quantitative 
determination of the critical pressure gradient at which runaway occurs. 

aUB2+pvU/b2 N pG. (1.6) 

2. Mean-flow equations 
In order to provide this quantitative analysis, we need to replace (1.2) and (1.6) by 

the appropriate governing differential equations for mean fields (averaged over z), 
and solve these either analytically or numerically. We shall, for the moment, retain 
time-dependence in these equations, which can then also describe the approach to 
equilibrium (as represented for example by the trajectory R+H in figure 2a). 

Let A = A(x,  y, t )  i, be the vector potential of the field B (satisfying V . A  = 0) ,  i.e. 

B, = aA/&, B, = -aA/&. (2.1) 

The current distribution in the fluid is then 

j = p i 1  V A B = -,us1 VSAi,, 
and the Lorentz force is 

F = j A B = -po1(V2A) VA. 

The electric field E is given by 
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and is related to j by Ohm's law, 
j = ~ ( E + u A  B), 

where u(x, y, t) is the velocity field, satisfying V . u = 0. Since V . j = 0 and the flow is 
two-dimensional, the divergence of (2.5) gives 

so that the electrostatic contribution - V$ to E is determined by the remote boundary 
conditions. In  conventional Hartmann flow, with a uniform applied field, this con- 
tribution provides the means of closing the current circuit, either within the fluid or 
within the duct boundary (see e.g. Hunt & Shercliff 1971). In  the present context, 
however, the periodicity in the x-direction implies that the net flux ofj in the z-direction 
is zero, and the problem of ' closing the current circuit ' does not arise. We shall suppose 
that there is no externally applied electric field, and in particular that there is no 
externally maintained potential difference between the remote boundaries z = f zo 
(where zo %- b). There will of course be boundary layers on z = & zo which will depend 
on their electrical properties, but outside these layers the assumption of a two- 
dimensional flow and field is justified, and the relevant solution of (2.6) is $ = cst; 
(2.5) then gives, in the usual way, 

v2g5 = 0, (2.6) 

aA/at + U. VA = AV2A, 
where h = (,uo~)-l. 

The Navier-Stokes equation is 

h / a t  + u . VU = -p-lVP - (V*A) VA + vV'U, (2.8) 

where (aplax) = -pc (2.9) 

is the applied pressure gradient, which we suppose to be constant. Here, and sub- 
sequently, the angular brackets ( ) denote averaging over a wavelength 2n/k in the 
x-direction. 

Now let u = U(y, t) i, + u'@, y, t), (2.10) 

where u' = (u', v', O ) ,  (u') = 0. (2.11) 

( A )  = 0. (2.12) 

It is obvious from the periodicity of the applied field that 

The average of (2.7) then gives 

a(w'A)/& = 0, i.e. (VIA) = fl(t), say, (2.13) 

and the average of the two components of (2.8) gives 

a u p t  + a(uw)/ay = c - ko p)-1 (aA/ax V ~ A )  + Vaeu/ag, (2.14) 

(2.15) 

the latter integrates, in conjunction with (2.9), to give 

(2)") + (~,uOP)-'((VA)~) = Gx+fZ(t). (2.16) 

The equations for the fluctuating fields A,  u' and P' = P-(P) are now simply 
obtained; the fluctuating part of (2.7) is 

aA aA -+U-+V.(u'A-(u'A)) at 8X = AVZ.4, (2.17) 
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and the fluctuating part of (2.8) is 
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aui aui 1 1 -+ U-+V.(U'U'-(U'U')) = - -VP'--(V2AVA-(V2AVA))+~V2~' .  (2.18) 
at ax P POP 

The underlined terms involve interaction of fluctuating quantities, and the treatment 
of such terms is in general exceedingly awkward. If, however, conditions are such that 

lull e u, (2.19) 

then these underlined terms will be negligible compared with UaAlax (in (2.17)) and 
Uau'lax (in (2.18)). Let us suppose that this is the case; then, provided we are not too 
far from equilibrium, the dominant balance in (2.17) is between mean convection and 
diffusion, i.e. 

(2.20) 

in order of magnitude (cf. (1.3)), and, assuming viscous effects are weak, the dominant 
balance in (2.14) is 

(cf. (1.4)). Likewise, the dominant balance of the x-component of (2.18) is 

G (pop)-yaAlaxv2A) - (pOph)-l (2.21) 

uauyax - ( p 0 p ~ ) - 1  U(B; - (B;)) ,  (2.22) 

or, again in order of magnitude, 

Uklu'l - (poph)-' U(B;) N G. 

Hence 

(2.23) 

(2.24) 

Now (BE) < $B; (with equality only at  the boundaries y = f b) ,  and so (2.24) becomes 

-<  lull B;: 
U - 4k( , !~~ph)~G'  

(2.25) 

The above argument is self-consistent provided that (2.19) is satisfied, i.e. provided 

that % < k(P0ph)2G7 (2.26) 

and we shall suppose that this condition is satisfied in what follows. 
It is easily verified that 

i a  B;: 
G aY k(PoPh)2 G' 
-- (U'V'} N (2.27) 

SO that the Reynolds-stress term in (2.14) is also negligible when (2.26) is satisfied. 
Hence (2.17) and (2.14) become 

aApt  + uaA/ax = W A ,  (2.28) 

aulat = G- ( p o p ) - i ( ~ ~ / a x v ~ ~ ) + v a 2 u l a y 2 ,  (2.29) 

and we have to solve these equations subject to the boundary conditions 

atl lax = - B, cos kx ] on y = + b  
u=o 

(2.30) 

and appropriate initial conditions. 
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Let us now introduce dimensionless variables 

7 = y / b ,  = b’kGA-lt, (2.31) 

and let A 

Then (2 .28)  and (2.29) become 

= B, k - l 9 [ i f  (7, r )  eikx], 

U = (h /b2k)  O. 

where 

a8 
-= 
ar 

(2.32 a )  

(2.32 b )  

( 2.33 a)  

(2 .336)  

(2.34) 

the four independent dimensionless parameters that characterize the problem. In  
terms of these parameters, the condition (2 .26)  becomes simply 

P $ Q 2 .  (2.35) 

Note that the Hartmann number M = B,b/(pophv)* and the magnetic Prandtl 
number P, = v / h  are related to these parameters by 

M = (Qe)-*l P, = /3~. (2.36) 

We shall be particularly concerned with the situation when K = O(l ) ,  Q = O(1)  and 
c: g 1 ,  so that 

M $ l ,  P, g 1. (2.37) 

The latter condition is realistic in the context of liquid metals, for which P, is generally 
in the range 10-5-10-7. 

The boundary conditions associated with (2.33) are (from (2 .30) )  

f (  f 1,r) = 1, I (  f 1,r) = 0. (2 .38)  

However, it is clear that both f and U are even functions of 7; we may therefore 
restrict attention to the interval 0 < 7 < 1, and adopt boundary conditions 

f,, = 0, 0, = o on 7 = 0, ( 2 . 3 9 ~ )  

f = 1 ,  U = O  on q = 1 .  (2 .39b)  

If /3 $ 1,  (2 .33a ,  b )  may be further simplified. In this situation, the adjustment to 
‘flux equilibrium’ is instantaneous, and the term Paf/h in ( 2 . 3 3 ~ )  can be dropped. 
We then have 

i Of = (a2 /a72 - K 2 )  f, (2.40 a)  

a l p T  = i - ( 2 ~ ) - 1 O j f 1 2 + € a 2 ~ / a 7 2 ,  (2 .40b)  

equations which, in effect, describe evolution along the flux equilibrium curve of 
figure 2 (a )  or 2 ( b ) .  

In  the computational work described in the following sections, the parameter P in 
(2 .33a ,  b )  was set equal to unity; this must merely be regarded as a computationally 
convenient choice: any conclusions concerning steady-state solutions of (2 .33a ,  b )  are 
independent of the value of /3 chosen, and would be the same if, instead, a small value 
satisfying (2 .35)  were chosen. 

h 



114 H .  Kumkar and H .  K .  Moffatt 

3. Conditions for the existence of a steady inviscid solution 
We may expect, from the introductory discussion, that in the inviscid limit ( E  = 0) 

a steady solution of (2.33) and (2.38) will exist? only if Q is not too large, i.e. only for 
Q < Q c ( ~ ) ,  where Q c ( ~ )  is a function to be determined. The critical 'runaway' pressure 
gradient (from (2.34b)) will then be given by 

Suppose fist that  a steady solution (f(r), l?(y)} does exist. Let 

1 
~ ( 1 )  = 1, a(1) = 0.J 

Then with ( E  = 0), the steady form of (2.33) becomes 

where, from (2.38), p'(0) = q'(0) = 0, 

p" -$Iqr2 - K 2 P  = 0, 

2p'q'+pq" = Op, 

Op2 = 2Q. 

Note that, since p (  1) = 1, and 8 must be finite, we must have 

(3.3) 

(3.44 

(3.4b) 

(3.4c) 

p(7)  > 0 (0 f r f 1). (3.5) 

2Q = o p 2  = p(2p'q' +pq") = (p2q')', (3.6) 

and so, since q'(0) = 0, p2q' = 2Qr. (3.7) 

We may now eliminate and q from (3.4) to obtain a single equation for p ;  for 

Hence ( 3 . 4 ~ )  becomes 

and we have the boundary conditions 

p'(0) = 0, p (1 )  = 1. 

(3.8) 

(3.9) 

This defines an intriguing nonlinear two-point boundary-value problem. The solution, 
if it  exists, must evidently satisfy 

0 < p ( q )  f 1, p'(7) > 0 (0 f r f 1).  (3.10) 

An alternative statement of the problem involves the Green function G([,7) defined 

(7 < 5) 
sinh K( 1 - 6) cosh KV 

K cosh K 
G ( 5 , r )  = (3.11) 

(and G ( r , [ )  = G(5 , r ) ) .  It may easily be shown that p ( 7 )  satisfies the nonlinear integral 
equation 

(3.12) 

... 
t The no-slip condition U( 1) = 0 is of course dropped in the inviscid limit, 



Dynamic runaway effect in M H D  channel Jlow 115 

We may deduce a necessary condition for the existence of a solution; for the condition 

1 p(0) > 0 implies that  

Hence, sincep(6) < 1, 

4Q2J: E2K-l Sinh K (  1 - 6) < 1, 

Q < Q ~ ( K ) ,  or, evaluating the integral, 

where 

(3.13) 

(3.14) 

(3.15) 

A second necessary condition for the existence of a solution,t which is SigniScantly 
stronger than (3.15) in the range 1-1 5 K 5 33, may be obtained by regarding the 
right-hand side of (3.8) as a functionf(p) which has a minimum at 

. . .  
Hence, usingp'(0) = 0, 

and so, since p (  1) = 1, it follows that C < y, or equivalently 

Pol) > 240) +&W ' &Qll*, 

3852 
Q < Q2 (K) = 29 ~ - 3  z 2.283 K - ~ .  

(3.17) 

(3.18) 

(3.19) 

(3.20) 

The functions Q1 (K), Q2 ( K )  are plotted in figure 3; the above argument establishes that, 

(3.21) 
for 

Q > min ( & i ( ~ ) ,  Q~(K)) ,  

the runaway effect definitely does occur. 
The exact necessary and sufficient condition for the existence of a solution, 

Q < Q c ( ~ ) ,  can only be determined numerically, either by numerical integration of 
(3.8) and (3.9), gradually increasing Q from zero for each fixed K, or by returning to 
the unsteady equations (2.33a, b) with B = 0, and integrating step by step in time €or 
different values of K and Q, to determine the region of the (K, Q)-plane in which the 
solution approaches a steady state; obviously this does not depend on the value of p, 
since the steady-state characteristics do not depend on p. We adopted this latter 
technique, which was then later easily modified to include viscosity effects (8 > 0). 
Figures 4 (a, b) show the computed development$ of the velocity profile O(q, 7 )  for 
e = 0 in two cases: 

(a) K = Q = 0.6, in which 0 evidently approaches a steady state as 7-+00; and 
(b) K = 3, Q = 0.005, in which the centreline velocity accelerates without limit, 

indicating that we are clearly in the runaway regime. 
By increasing Q for each fixed K,  the value Q c ( ~ ) ,  at which the transition occurs 

from behaviour of type (a) to hehaviour of type (b), was determined. The curve 

t We are indebted to Dr M. R. E. Proctor, who suggested the argument of this paragraph. 
$ Full computational details may be found in Kamkar (1981); the value of actually adopted 

in these computations was B = 1. 
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K 

FIGURE 3. The hatched region, bounded by Q = Q O ( ~ ) ,  denotes the domain of the ( K ,  &)-plane in 
which a steady inviscid solution exists. Runaway occurs if Q > QJK). The necessary conditions 
for existence of a steady solution, obtained analytically, are Q < Q 1 ( ~ )  and Q < Q*(K). For 
profile evolution a t  the points A, B see figure 4. 

Q = Q J K )  is shown in figure 3 ,  and i t  is evident that the necessary conditions (3 .15)  
and (3.20) for the existence of a steady solution are by no means sufficient. The curve 
Q = Q,,(K) is characterized by a rapid fall-off for K 2 1 ;  the behaviour as K+ 0 is quite 
regular, and Q,(O) = 0.625. 

4. Effect of weak viscosity on the possible steady states 
We return now to the steady form of (2 .33a ,  b ) ,  viz 

iof = (d2/dY2-  K2)  f, ( 4 . l a )  

( 2 Q ) - 1 0 J f 1 2  = 1 + E d 2 0 / d y 2 .  ( 4 . l b )  

We shall suppose that E g 1 ;  we then expect that, when Q is sufficientlysmall, the flow 
will be of Hartmann type (in the sense discussed in 3 l ) ,  whereas, when Q is large, the 
field will be expelled, and the flow will be akin to Poiseuille flow. Let us first examine 
these limiting situations. 

4.1. Q small, Hartmann-type flow 

At  leading order, the flow does not affect the magnetic field, and we have 
f = cosh q/cosh K ,  (4 .2)  

and from (4.1 b ) ,  
d 2 0  1 cosh2Ky 
dq2 2Q cosh2K' 

I-!-€- = - 0-  (4 .3)  
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FIGURE 4. Typica~evolution of velocity profiles: (a) when Q < Q,(K);  ( b )  when Q > Q,(K). Note 
that in case (a), U(1) +- 2Q = 1-2 aa 7 + co, consistent with ( 3 . 4 ~ ) .  In caae ( b ) ,  the runaway 
effect is clear: the centreline velocity accelerates without limit. 

With 6 Q 1, we evidently have a Hartmann layer, thickness 6 N d o n  both walls. In the 
core (i.e. outside these layers), the velocity is given by 

0 - oc = 2 9  cosh2 K sech2 KT. (4 .4 )  

In this region, there is an exact balance between pressure gradient and Lorentz 
force. The solution (4 .4)  does not, however, satisfy the no-slip condition on 7 = 1;  
hence the need for the Hartmann layers, in which 

0 G.3 = 2Q{1- exp ( -  (1 - / 7 I ) / ( W * ) } ,  (4 .5 )  

satisfying 

The centreline velocity is given by 

o0 = 2Qcosh2~. ( 4 - 7 )  

The description is self-consistent if the term iof in  ( 4 . 1 ~ )  is negligible, i.e. if 

Q < K2sech2K. ( 4 . 8 )  

For K 2 1, this is a strong constraint, and if it is violated we may expect to be near, if 
not actually into, the runaway regime. 
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4.2. Q 1, Poiseuille-typeJEow 
In  this situation, we expect the field to be expelled, so thatf x 0 except in boundary 
layers on both walls. At leading order we then have 

sd21f/dl12+ 1 % 0, (4.9) 

so that 0 x (1 - r ] 2 ) / 2 € ,  (4.10) 

i.e. the Poiseuille parabolic profile. 
To improve on this description let 

i9 = (1-r]z)/2s+(sQ)-11t,(r), (4.11) 

where ??.( f 1 )  = 0. It will appear below that the (sQ)-l factor here correctly represents 
the order of magnitude of the small correction due to the Lorentz force in the boundary 
layer. At leading order, ( 4 . 1 ~ )  then becomes 

(d2/dq2 - K2)f = - fri€-'(r]2 - 1)f. (4.12) 

Here we shall suppose that K is a t  most O( 1) and neglect the streamwise diffusion term 
- KY. Near r] = 1,  the appropriate boundary-layer variable is 

y = d ( l  - r ] ) ,  

in terms of which (4.12) becomes 
d2f/dy2 z -iu, 

(4.13) 

(4.14) 

and the solution, exponentially small for y-. 00, is 

f(6) = a Ai (,-tin 5) (4.15) 

where aAi(0) = 1. Note that, as g-+00, 

f(6) - +an-*g-i exp [ -&in - 4 J2 C;%( 1 - i)]. (4.16) 

Substitution of (4.11) and (4.15) in (4.lb) now gives, again using the boundary- 

(4.17) layer variable 5, 

and the solution satisfying 

d20./dg2 x $a261 Ai(z)12 (z = e - i i n y ) ,  

Ol = o on 5 = 0, dOlt,/dy-+o as ~ + O O  (4.18) 

is 

Note that, as 6+00, Ul(y)-+- 08, where 

(4.19) 

(4.20) 

The Poiseuille profile (4.10) is therefore retarded in the core by an amount (e&)-108; 
the effect of the magnetic field is simply to transmit this retardation through the 
boundary layers. The centreline velocity, from (4.11), is 

(4.21) 
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FIQ~RE 5 .  Centreline velocity 17, as a function of Q for K = 1 and various fixed values of E. A 
fold appears for E < 0.016. The dots represent computed steady states; the dashed portions 
represent unstable states. A jump from Hartmann-type flow to Poiseuille-type flow occurs a t  
points such as A;  a reverse jump occurs at points such as C. 

5. Runaway and hysteresis effects when E > 0 

We now turn to the evolution of the steady state as the parameter Q is increased 
through values of order unity. We may expect a jump from Hartmann-type flow to 
Poiseuille-type flow when Q is somewhat greater than the value Qc ( K )  obtained in 3 3 
on the basis of inviscid analysis (greater, because weak viscosity may be expected to 
have a mildly retarding effect on the velocity and so on the flux expulsion process). 

Equations (2.33a, 13) wereintegrated numerically for the case K = 1, which is believed 
to be quite representative, for varying values of E and Q. As indicated previously, the 
asymptotic steady-state behaviour does not depend on /3, and the value /3 = 1 wa8 
used in the computations. It waa found convenient to explore the (e,Q)-plane by 
slowly increasing Q from small values, keeping E constant. For the lowest value of Q, 
the initial conditions 
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FIGURE 6. Projection on the ( B ,  @-plane of the fold in the surface 6&, Q), inferred from figure 
5. In the shaded region of the parameter space, there are three steady solutions, one of Hartmann 
type, one of Poiseuille type, and one unstable. 

were adopted, and the equations integrated until a steady state was attained, within 
acceptable accuracy. The corresponding values off and 0 were then used as initial 
conditions for the next value of Q, and so on. The asymptotically steady centreline 
velocity oo determined in this way is shown in figures 5(a, b )  as a function of Q for 
various values of E .  As expected, the behaviour is discontinuous when E is sufficiently 
small ( < 0.015 for K = 1) .  The jump in co at a point such as A in figure 5(a) is just the 
runaway transition from a Hartmann-type flow to EL Poiseuille-type flow in which the 
magnetic flux is effectively expelled. The value of Q at which this jump occurs depends 
on E in the manner indicated in figure 6 .  

If we start with a Poiseuille-type profile at  a point such as D in figure 6(a),  and 
slowly decrease Q, then a reverse jump to a Hartmann-type profile occurs but is delayed 
to the point C ,  i.e. a hysteresis effect occurs. The value of Q corresponding to this 
reverse jump is a190 a function of E ,  as shown in figure 6.  Clearly, we are dealing here 
with a conventional cusp catastrophe, the shaded region in figure 6 representing values 
of Q and 6 for which the solution is not unique (in fact, in this region, there are three 
solutions, but one of these, corresponding to the dashed portions of the curves in 
figures 5(a, b ) ,  is structurally unstable). Regarding the centreline velocity ffo as a 
(triply-valued) function of E and &, the cusp-shaped region in figure 6 is the projection 
of the fold in the surface 0, = 0, ( E ,  Q ) .  

6. Discussion 
The detailed calculations of $0 2-5 are entirely consistent with the qualitative 

description of the runaway phenomenon given in $ 1,  and provide convincing evidence 
that this description is essentially correct. The phenomenon occurs essentially because 
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(B,) = 0 on y = 0, so that flux expulsion can occur through reconnection of flux lines 
as Q increases. The particular sinusoidal distribution of By assumed in (1.1) is mathe- 
matically convenient, but any periodic distribution of By with zero mean in the 
x-direction would presumably lead to similar behaviour. 

Throughout the analysis we have assumed that the flow is laminar, which is not 
unreasonable in the Hartmann regime of figure 6 in which the magnetic field will tend 
to stabilize disturbances in the strong shear regions near the walls (Lock 1955). When 
Q is increased beyond the critical value QC ( K ) ,  however, the Reynolds number of the 
flow (based on mean velocity) increases by a factor of order (&s)-l (from comparison 
of (4.4) and (4.10)), which may obviously lead to a turbulent state. The developing 
profiles of figure 4(b) show points of inflexion, which again suggests that  instabilities 
may be expected as we move into the runaway regime. Consequently, the runaway 
phenomenon may in practice be observed as a sudden increase of flow rate (for in- 
finitesimal increase of pressure gradient) with a simultaneous transition to turbulence. 

Let us now consider the possibility of an experiment to detect the runaway effect. 
The most convenient fluid would (presumably) be mercury for which P, z 1.7 x lo-'. 
If we take K = 1, then it is evident from figure 5 that, to detect the runaway effect, we 
should vary Q between about 0.25 and 1, with E < 0.015. If we take s = 0-01 then, 
from (2.36), /I z 1.7 x 

(6.1) 
so that we are dealing with a very modest range of Hartmann numbers. The corre- 
sponding centreline velocity 0, jumps from about 4 to about 15 when the runaway 
occurs (for this value of E ) .  From (2.32), this means that the magnetic Reynolds number 
based on the (dimensional) centreline velocity U,, viz 

(6.2) 

and the inequality (2.35) is easily satisfied. Moreover 

N = (&+ = log-,, 

R, = U, b/h = Q K - ~ ,  

has a similar jump a t  runaway. Herein lies the main difficulty of an experiment, since 
values of the magnetic Reynolds number of order unity are difficult to achieve in 
mercury experiments. Increasing the value of K will decrease the value of QC ( K ) ,  but 
this is compensated by an associated increase in the centreline velocity U, given by 
(4.7), and the magnetic Reynolds number at the runaway point remains of order unity 
(or greater). 

A possible way round this difficulty would be to use a travelling magnetic field, with 
phase velocity - c  at both walls; the effective magnetic Reynolds number for flux 
expulsion purposes is then 

and cb/A can be chosen near to the critical value so that a relatively small increase 
U, b/h will trigger the runaway effect. The boundary conditions are of course changed 
by this artifice, and an additional parameter cb/h appears in the specification of the 
problem. This extension would however appear to merit further study. There is no 
doubt that a travelling field can be used to simulate high-magnetic-Reynolds-number 
effects, and this provides additional scope in the use of magnetic fields for flow control. 

2 k(,u,ph)2 C, 
then the magnetic field is so strong that the fluid particles tend to follow the field 
lines except in wall boundary layers; consequently the fluctuation field u' becomes 
comparable with the mean Ui,. This is similar to the strong-field limit studied in the 
rotating-field context by Alemany & Moreau (1977). 

I32 = (U,,+c)b/A, (6.3) 

Two final remarks: first, ifthe condition (2.26) is not satisfied, i.e. if 
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Secondly, as noted earlier, the runaway phenomenon occurs essentially because 
(B,) = 0 on y = 0. The situation is however entirely different if the applied field is 
such that B,is zero for all x on y = 0. For example, if the magnets of figure 1 are shifted 
in phase so that the boundary condition (1.1) is replaced by 

B,=&B,,coskx on y = - + b ,  (6.3) 

then B, = 0 on y = 0 by symmetry. In this case there is no steady inviscid solution 
for any value of G (no matter how small); in a sense therefore the runaway effect now 
occurs at G = O !  When E > 0, however, there is no reason to expect discontinuous 
dependence of U on Q in this case, which is therefore qualitatively different from that 
studied in the foregoing sections. 

REFERENCES 

ALEMANY, A. & MOREAU, R. 1977 lhoulement d’un fluide conducteur de 1’BlectricitB en prBsence 
d’un champ magnhtique tournant. J. Mdc. 16, 625-646. 

GALLOWAY, D. J., PROCTOR, M. R. E. & WEISS, N. 0. 1978 Magnetic flux ropes and convection. 
J. Fluid Mech. 87, 243-261, 

GIMBLETT, C. G. & PECKOVER, R. S. 1979 On the mutual interaction between rotation and 
magnetic fields for axisymmetric bodies. Proc. R .  SOC. Lond. A 368, 75-97. 

HUNT, J. C. R. & SIIERCLIFF, J. A. 1971 Magnetohydrodynamics at high Hartmann number. 
Ann. Rev. Fluid Mech. 3, 37. 

KAMKAR, H. 1981 Kinematic and dynamic aspects of flux expulsion in magnetohydrodynamics. 
Ph.D. thesis, Bristol University. 

LOCE, R. C. 1955 The stability of the flow of an electrically conducting fluid between parallel 
planes under a transverse magnetic field. Proc. R .  SOC. Lond. A 233, 105-125. 

MOFFATT, H. K. 1980 Rotation of a liquid metal under the action of a rotating magnetic field. 
In MHD-Flows and Turbulence (ed. H. Branover & A. Yakhot), pp. 45-62. Israel Univer- 
sities Press. 

PARKER, E. N. 1963 Kinematical hydromagnetic theory and its applications to the low solar 
photosphere. Astrophys. J. 138, 552-575. 

PARKER, R. L. 1966 Reconnexion of lines of force in rotating spheres and cylinders. PTOC. R. 
SOC. Lond. A291, 60-72. 

PROCTOR, M. R. E. & GALLOWAY, D. J. 1979 The dynamic effect of flux ropes on Rayleigh- 
BBnard convection. J. Fluid Mech. 90, 273-287. 

WEISS, N. 0. 1966 The expulsion of magnetic flux by eddies. Proc. R .  SOC. Lond. A 293, 
310-328. 

ZEL’DOVICR, YA. B. 1957 The magnetic field in the two-dimensional motion of a conducting 
turbulent fluid. Sou. Phys. J.E.T.P. 4, 460-462. 


